A Linear Systolic Array for the Computation of Gröbner Basis

نویسندگان

  • TANGUY RISSET
  • Tanguy Risset
  • Yannick Saouter
چکیده

Grr obner basis are a powerful tool with many applications in symbolic computation. In this article, we describe a linear systolic array which can be used as coprocessor for eecient computation of Grr obner basis. It was designed by synthesis from the high-level speciication language Alpha. Un r eseau systolique lin eaire pour le calcul de bases de Grr obner R esum e : Les bases de Grr obner sont un outil puissant avec de nombreuses applications dans le domaine du calcul symbolique. Dans cet article, nous d ecrivons un r eseau systolique lin eaire qui peut ^ etre utilis e comme coprocesseur pour le calcul eecace des bases de Grr obner. Il a et e produit par synth ese a partir du langage de sp eciication de haut niveau Alpha.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Trigonometric Functions by the Systolic Implementation of the CORDIC Algorithm

Trigonometric functions are among the most useful functions in the digital signal processing applications. The design introduced in this paper computes the trigonometric functions by means of the systolic arrays. The method for computing these functions for an arbitrary angle, , is the CORDIC algorithm. A simple standard cell is used for the systolic array. Due to the fixed inputs, in some...

متن کامل

Computation of Trigonometric Functions by the Systolic Implementation of the CORDIC Algorithm

Trigonometric functions are among the most useful functions in the digital signal processing applications. The design introduced in this paper computes the trigonometric functions by means of the systolic arrays. The method for computing these functions for an arbitrary angle, , is the CORDIC algorithm. A simple standard cell is used for the systolic array. Due to the fixed inputs, in some...

متن کامل

Computing SAGB-Gröbner Basis of Ideals of Invariant Rings by Using Gaussian Elimination

The link between Gröbner basis and linear algebra was described by Lazard [4,5] where he realized the Gröbner basis computation could be archived by applying Gaussian elimination over Macaulay’s matrix . In this paper, we indicate how same technique may be used to SAGBIGröbner basis computations in invariant rings. . Keywords— Gröbner basis, SAGBIGröbner basis, reduction, Invariant ring, permut...

متن کامل

Design of one-dimensional systolic-array systems for linear state equations - Circuits, Devices and Systems, IEE Proceedings G

To solve linear state equations, a twodimensional systolic-array system has been proposed [SI. For the same purpose, various kinds of one-dimensional arrays are designed in the paper. The linear systolic-array system with first-in-firstout (FIFO) queues can be designed by applying double projections from the three-dimensional dependence graph (DG). As the array thus designed needs processors wi...

متن کامل

Computation of Minimum Hamming Weight for Linear Codes

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996